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ABSTRACT 
This paper defines the basic constraints for 
interplanetary round trip travel or, equivalently, for 
round trip travel from and to a natural or artificial 
satellite, such as round trips from the International 
Space Station to another satellite and back. While the 
constraints are straightforward, they do not seem to 
have been discussed previously in the literature, 
perhaps because round trip travel has not been a 
realistic option for most missions.  
We call the location that we are leaving and returning to 
the home planet or satellite and the spacecraft which 
makes the round trip the traveler. In round trip space 
travel, the traveler and the home planet must begin and 
end at the same true anomaly. Consequently, the 
fundamental constraint for mission design is as follows: 

Over the duration of the mission the 
difference in the change in true anomaly for 
the home planet and the change in true 
anomaly for the traveler must be an integral 
number of revolutions.  

This fundamental constraint implies a number of 
interesting properties for round trip travel to other 
locations in the solar system. For example: 

• For Hohmann minimum energy transfers, going 
to nearby objects takes longer than going to 
some which are further. 

• The shortest Hohmann round trip to a destination 
further from the Sun is a 2-year trip to a 
heliocentric distance of 2.2 AU, i.e., 1.2 AU 
outward from the Earth.  

• Increasing the transfer velocity has only a very 
small effect on total trip time, except at discrete 

“jumps” where the total trip time can change by 
a year or more. 

• One way to reduce the round trip time is to go 
beyond the target planet and visit the target “on 
the way back.” 

• Some scenarios that go above a ∆V threshold can 
dramatically reduce the total round trip time, i.e., 
a reduction in round trip time for a Mars mission 
from the traditional 2.5 years to less than 6 
months. 

This paper discusses the general constraint equations 
and the resulting implications for round trip mission 
design. These equations provide very fundamental 
constraints on solar system travel in which people or 
equipment want to visit another planet and return. 

INTRODUCTION 

Substantial work has been done to date on both Earth 
orbiting and interplanetary orbit and mission design — 
i.e., launch opportunities, transfer times, ∆Vs, and 
optimization of mission timelines. (See, for example, 
the summary works by Brown [1998], Wertz [2001], 
and the references therein.) However, the bulk of this 
work has focused on 1-way travel, with relatively little 
work on round trip missions, largely because round 
trips have required too much energy and time to be 
realistic for most missions. Excellent summaries of the 
various round trip trajectories considered to date are 
given by Hoffman, et al. [1989] and Young [1988] for 
impulsive trajectories and by Polsgrove and Adams 
[2002] for low thrust trajectories. Among the options 
considered are “Sprint” missions [Hoffman, et al., 
1989; Hoffman and Soldner, 1895] that reduce 
somewhat the total trip time, Cycler or VISIT orbits 
[Friedlander, et al., 1986] that make continuing round 
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trips to the vicinity of a particular planet (typically 
Mars), a Cycler variant called the Escalator [Aldrin, 
1985], and, of course, the usual set of direct transfers 
and planetary fly-bys [Brown, 1998; Hoffman, et al., 
1989]. 

This paper focuses on a specific question for round-trip 
travel: 

What are the fundamental constraints on 
the mission design and mission timeline 
created by the requirement to return 
“home” at the end of the mission. 

This problem was first addressed for electric propulsion 
missions by Microcosm in September, 2001, as part of 
the TRW-led§ team for the Mars Sample Return electric 
propulsion study funded by JPL. The basic problem 
was that optimization codes gave correct numerical 
answers for electric propulsion transfer, but the results 
were particularly difficult to interpret physically. 
Although many parametric runs were done with a wide 
range of input parameters, these adjustments had only a 
very small impact on the overall mission timeline. This 
outcome led to consideration of whether there were 
very basic constraints on impulsive round-trip travel as 
well that would have an impact on our capacity to tour 
the solar system and return home, either robotically or 
with human crews‡. The purpose of this paper is to 
describe the “basic physics” of interplanetary round trip 
travel. Although the results are discussed entirely in 
terms of impulsive missions, the same constraints apply 
(and have similar results) to planetary fly-bys, electric 
propulsion missions, or other transfer trajectories. 

The basic definitions we use are as follows: 

Round Trip = a space mission which begins and ends 
on a single planet, satellite, or orbital location, called 
Home. 

We will be concerned primarily with interplanetary 
travel and will often use the terminology “home 
planet;” however, the fundamental rules apply to 
Earth orbits as well. 

Target = the planet, satellite, or orbital location that 
we wish to visit. 

Traveler = the spacecraft which makes the round trip. 

Mission Anomaly = the angular position of any of the 
orbiting objects with respect to some reference that 
can be regarded as fixed in inertial space. 

                                            
§ TRW has since become a part of Northrop Grumman Space  

Technology. 
‡ Development of the original transfer equations and all work 

on non-electric propulsion missions has been done under 
Microcosm IR&D. 

The key point is that we wish to talk about 
differences in angular positions among various 
objects and the changes in these angular positions 
over time. Therefore, we want to measure this 
angular position with respect to some common 
reference. This is somewhat different than the usual 
definition of true anomaly that is measured with 
respect to a potentially changing perigee location. 

Synodic Period = the period of the target with respect 
to the home planet.  

The synodic period measures how long it takes for 
the target and the home planet to return to the same 
positions with respect to each other. Assuming Earth 
is the home planet, the synodic period will be much 
longer than a year for planets or locations near the 
Earth and somewhat more than a year for more 
distant planets.  

THE FUNDAMENTAL EQUATIONS OF ROUND 
TRIP TRAVEL 

The following conditions are both necessary and 
sufficient for round trip travel: 

1. The difference in the change in mission 
anomaly between the traveler and the home 
planet must be an integral number of orbits.  

2.  The total change in radial position must be the 
same for both the traveler and the home planet. 

3. The change in cross-track position must be the 
same for both the traveler and the home planet. 

In addition, if a rendezvous or soft landing is planned, 
then the velocity of the traveler at the end of the 
mission must match the velocity of the home planet.  

Condition 1 is the primary driver of round trip mission 
design. Condition 2 is met as part of the orbit design 
process that addresses Condition 1. (The home planet 
may or may not change its radial position over the 
duration of the trip.) Condition 3 may impact the ∆V 
requirements, but is typically not a major design driver, 
unless the inclination of the target and the home planet 
are very different (i.e., landing on a high inclination 
comet and returning to Earth). Of course, for planetary 
trips the cross-track position does not normally change 
for the home planet. However, the “home satellite” 
cross-track position can change in the case of Earth or 
planetary orbiting missions.  

So far as I am aware, these fundamental constraints 
have been recognized in a broad sense, but have not 
been explicitly stated previously or their implications 
explored. We begin by breaking down the total mission 
duration, T, into a series of transportation segments, ti, 
and a stay on the target planet of duration tS. (See Fig. 
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1.) The various transportation segments can represent 
multiple cruise and propulsive phases, such as planetary 
fly-bys, or several cruise phases with intermediate 
impulsive burns such as ascent and descent trajectories. 
Ordinarily at a minimum there will be a tout, a ts, and a 
treturn, representing the outbound, stay at the target, and 
return portions of the trip. For any mission, 

 T  = Σ ti  +  tS (1) 

During each segment, the spacecraft goes through a 
mission anomaly arc (i.e., angular position as measured 
from the Sun) of magnitude ∆νi with an average 
angular rate of 

 ωi = ∆νi / ti (2) 

 
Fig. 1.  The Total Mission, T, Time is Broken into Multiple 
Transportation Segments and a Stay, tS, at the Target 
Planet. 

The fundamental constraint for round trip interplanetary 
travel is that we must return to the planet where we 
started, i.e. 

 ∆νH  =  ∆νspc + 2πW (3) 

where ∆νH is the change in mission anomaly of the 
home planet, ∆νspc is the change in mission anomaly of 
the traveler, and W is an integer (positive or 0 for 
outward trips, negative or 0 for inward trips), as 
illustrated for W = 1 in Fig. 2. While some other 
equations are approximations, Eq. (3) must be satisfied 
exactly. 

 
Fig. 2.  The Fundamental Constraint is that the Difference 
in the Change in Mission Anomaly for the Traveler and the 
Home Planet Must be an Integer (Negative, 0, or Positive). 

For the home planet 

 ∆νH ≈ ωH T (4) 

where ωH is the orbital angular velocity of the home 
planet, ~ 0.986 deg/day for the Earth, and T is the total 
round trip travel time. For the traveler, we divide the 
trip into K segments, such that 

∆νspc ≈ ω1 t1 + ω2 t2 + … + ωK tK  = 
Σ ωi ti + ωTarget tS  (5) 

 T = t1 + t2 + … + tK  =   Σ ti + tS  (6) 

where ωi and ti are the average angular rates and time of 
each travel segment, ωTarget is the average angular rate 
of the target ~ 0.524 deg/day for Mars, and tS is the stay 
time at the target. Typically (though not necessarily), 
the average angular rates for the various segments will 
fall in the following range: 

ωimax  =  ωH  ≈ 0.986 deg/day for the Earth (7a) 

ωimin  =  ωTarget  ≈ 0.524 deg/day for Mars (7b) 

For convenience, we define the dimensionless variable 
ω’i = ωi / ωH. Then the fundamental constraint of Eq. (3) 
can be rewritten as 

T  = ∆νH /ωH  = ∆νspc /ωH   + 2π W /ωH  

 =  Σ ωi ti /ωH + ωTarget tS /ωH + 2π W /ωH  (8a) 

T  =  Σ ω’i ti  +  ω’Target tS  +  W PH (8b) 

where PH is the home planet sidereal period ~ 365.24 
days for the Earth. For a typical outbound mission: 

ω’imax = 1  

ω’imin  =  ω’Target  =  ωTarget / ωH ≈ 0.531  
for the Earth/Mars/Earth trip  

We can solve Eqs. (6) and (7) for T and tS in terms of 
the travel times and average angular rates: 

T  =  (Σ ω’i ti  – ω’Target Σ ti  + W PH )/(1 – ω’Target) (9) 

tS  =  T  –  Σ ti  (10) 

We can define an “approximate minimum round trip 
travel time,” Tmin, as the minimum round trip time if we 
travel rapidly to the target, stay at the target long 
enough to allow the planets to again get in position for 
transfer, and then travel rapidly home. For W = 1, 

T1min  =  ω’imin (t1 + t2 + ... + tK) + PH   =   
ω’imin T1min + PH (10a) 

T1min =  PH / (1 –  ω’imin)  ~  2.13 yrs  =  779 days for 
Earth/Mars (10b) 

W = 1 means that the home planet makes one more trip 
around the Sun than the traveler does. (We will see 
shortly that there are several techniques that can lead to 
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shorter round trip times.) For the Earth/Mars example 
with W = 2, we have 

T2min = 2 PH / (1 – ω’imin) ~ 4.26 yrs =  
1,558 days (11) 

Generally, the total travel time will be longer than the 
above minimum times. Thus, if W = 1, the approximate 
minimum total trip time to Mars and back will be over 
2 years and the probable trip time will be 2.5 to 3 years. 
If W = 2, the approximate minimum total trip time to 
Mars and back will be over 4 years and the probable 
trip time will be over 5 years. 

HOHMANN ROUND TRIP TRAVEL 

For most cases, a Hohmann transfer represents the 
minimum energy transfer between two circular, 
coplanar orbits. (See, for example, Vallado [2001].) 
Thus, assume that a minimum energy mission consists 
of 2 Hohmann transfers + a stay of length tS.* Then 

T  =  2 ω’transfer ttransfer  + ω’Target tS  + W PH (12) 

tS  =  T – 2 ttransfer   (13) 

Therefore,  

T  =  (W PH  +  2 ttransfer (ω’ transfer  – ω’Target))/ 
(1 – ω’Target) (14) 

For an Earth-Mars Hohmann transfer** and W = 1, we 
have 

∆νtransfer  =  180 deg (15a) 

ttransfer ~  259 days (15b) 

ωtransfer = 0.695 deg/day (15c) 

ω’transfer = 0.705 (15d) 

Total Trip: T ≈  971 days  =  2.66 yrs (15e) 

 Stay at Mars: tS ≈  453 days = 1.24 yrs (15f) 

Thus, the traditional round trip approach involves an 
extended stay on Mars. The key point is that this time is 
not easily influenced by changing the transfer speed. If 

                                            
* Depending on the application, the descent and ascent times 

at the destination can be included either in the stay time, tS, 
or in the transfer times. For the remainder of this paper, we 
include any required ascent and descent times in the stay 
time and exclude the descent and ascent ∆V’s from the total 
transfer ∆V because these will vary, depending on the nature 
of the mission and whether the target is a planet, an asteroid, 
or an empty point in space. 

**We assume throughout that Mars and the Earth are in 
circular, coplanar orbits.  The actual non-circular, non-
coplanar nature of the orbits changes the numerical values 
somewhat, but does not effect the basic process or mission 
analysis technique. 

we travel more quickly, then we have to spend more 
time at Mars waiting for the Earth to make its one extra 
trip. Decreasing the travel time increases the duration of 
the stay on Mars, but has very little effect on the total 
trip time. Recall from Eq. (10) that if we make a very 
rapid trip to Mars, we would still have to spend 779 
days on Mars just to allow the Earth time to again catch 
up.  

For Earth/Mars Hohmann round trips with W = 0, the 
stay time is –326 days, i.e., we need to leave Mars 
about a year before we arrive. For W = 2, the total trip 
is 1,750 days (4.8 years) and the stay time is 1,232 days 
(3.4 years). 

We can use Eqs. (13) and (14) to determine the total 
trip time and stay time for Hohmann round trips to 
various distances. The results are shown in Fig. 3 for 
trips to the vicinity of Mars and the asteroid belt, in Fig. 
4 for trips to the vicinity of Jupiter, and in Fig. 5 for 
trips toward the Sun, i.e., in the direction of Venus or 
Mercury. 

 
Fig. 3.  Total Trip Time and Stay Time for Hohmann Round 
Trip Travel Outbound from the Earth to the Vicinity of Mars 
and the Asteroid Belt. 

 

Fig. 4.  Total Trip Time and Stay Time for Hohmann Round 
Trip Travel to the Vicinity of Jupiter. 
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Fig. 5.  Total Trip Time and Stay Time for Hohmann Round 
Trip Travel Inbound from the Earth, I.E., Toward Venus or 
Mercury. 

For most practical interplanetary travel, the Hohmann 
transfer round trip is the lowest energy approach. Using 
Hohmann transfers to any destination fixes both the 
round trip time and stay time. The quickest outbound 
Hohmann round trip is 2 years in duration with W = 1. 
It goes to a distance of 2.2 AU with 0 stay time. 
Hohmann round trips to less than 2.2 AU take more 
than 2 years and increase rapidly in total trip time at 
less than 1.5 AU (i.e., the distance of Mars). Hohmann 
round trips to further than 2.2 AU require W > 1 to have 
a non-negative stay time and, therefore, require a total 
trip time greater than 3 years (See Fig. 3). Hohmann 
round trips to Jupiter require W = 5 or greater and a 
total trip time greater than 6 years to achieve a non-
negative stay time (See Fig. 4). With W = 1, or any odd 
value, the stay time is centered when the home planet 
and the target are 180 deg apart, thus making 
communications challenging. With W = 2, or any even 
value, the stay time is centered when the target and the 
Earth are in conjunction, i.e., lined up on the same side 
of the Sun. In this case, communications during the stay 
is much easier. 

The quickest inbound Hohmann round trip is 0.36 years 
(133 days) in duration with any negative value of W. 
This corresponds to dropping into a grazing orbit about 
the Sun and returning, not a particularly practical trip 
for most purposes. W = –1 trips to Venus at 0.72 AU 
take 2.04 years (747 days) with a stay time of 1.2 years 
(455 days). A summary of the Hohmann round trip 
baseline parameters for nearby destinations is as 
follows: 

 Mean Orbit 
Radius 

Round  
Trip ∆V 

Round 
Trip Time 

Stay 
Time 

Venus 0.72 AU 10.4 km/sec 2.08 yrs 1.28 yrs 
Mars 1.52 AU 11.2 km/sec 2.66 yrs 1.24 yrs 
Jupiter 5.20 AU 28.9 km/sec 6.05 yrs 0.59 yrs 

Here and elsewhere “round trip ∆V” is the transfer plus 
velocity matching ∆V for both the transfer to the target 
and the return trip to Earth, i.e., a total of 4 impulsive 
thruster firings. It does not include the ∆V to leave or 
land on the Earth or the target. 

FASTER ROUND TRIPS 

Hohmann transfer round trips minimize the total 
energy, but take a long time. However, the transfer time 
is a major driver of cost, risk, and utility for human 
spaceflight. For example, radiation exposure becomes a 
significant problem in long duration human missions. 
While radiation exposure can be solved with sufficient 
shielding, it’s hard to envision thriving Martian tourism 
and commerce with a 2.7 year minimum round trip 
time. If we are going to truly settle and use the solar 
system, we need significantly faster round trip travel 
options. 

Because the Hohmann transfer trajectory is tangent to 
the target orbit, we can significantly reduce the 1-way 
trip time and mission anomaly angle with a relatively 
small increase in ∆V. For the Mars Hohmann trip, 
increasing the total ∆V by 0.112 km/s (1%) reduces the 
1-way transfer time by 11 days (4.3%) and the transfer 
change in mission anomaly by 5.3 deg (3.0%). 
Unfortunately, this ∆V reduces the total trip time by 
only 2 days (0.2%). 

The fundamental problem with round trip travel is that 
the total time is driven by the constraint to have the 
home planet make an integral number of additional 
orbits around the Sun than the traveler makes. The more 
we slow down the traveler, the faster the Earth can 
“lap” the traveler and the sooner they can return home. 
Therefore, for outbound trips, slowing the traveler 
speeds up the round trip time, so long as we remain 
with the same value of W. 

This effect is illustrated in Fig. 6. A Hohmann transfer 
has a mission anomaly change of 180 deg with the 
transfer trajectory tangent to the orbit of the target 
planet. A T1 Transfer (also called Type 1 in JPL 
terminology) occurs on the first half of a transfer 
trajectory which goes beyond the Target planet and has 
a mission anomaly change of less than 180 deg. This 
reduces the 1-way transfer time and increases the stay 
time, but has little impact on the round trip time. In 
contrast, a T2 Transfer (or Type 2) occurs on the 
second half of the transfer trajectory with a mission 
anomaly change of more than 180 deg. This increases 
the 1-way transfer time, but reduces the round trip time 
by adding a low angular velocity arc at aphelion. 
Unfortunately, the stay time is significantly reduced 
because the traveler spends much of its time in the 
aphelion arc.  
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Fig. 6.  T1 and T2 Transfers.  T2 transfers can reduce the 
total trip time by allowing the spacecraft to spend time at the 
low angular velocity arc at aphelion. 

The stay time and round trip time for alternative Mars 
round trips with W = 1 are shown in Fig. 7 and for 
Jupiter round trips with W = 5 in Fig. 8. (Note that the 
horizontal coordinate in these and subsequent figures is 
the round trip ∆V as defined above. The curves 
converge on the left at the minimum energy Hohmann 
∆V point.) Unfortunately, the mission duration effects 
are small for both Mars and Jupiter. For Mars, using a 
T2 transfer to reduce the total trip time to 2.3 years 
drops the stay time to 0. In the case of Jupiter, the T2 
stay time drops to 0 almost immediately such that a T2 
transfer for W = 5 is not an effective alternative. 
Speeding up the normal T1 transfer has virtually no 
effect on round trip travel time. Using a T2 transfer 
approach provides a greater reduction in total trip time 
than a T1 transfer, but is applicable in only some 
circumstances and greatly reduces the stay time. 

 

Fig. 7.  Mission Duration Vs. Round Trip ∆V for Alternative 
Mars Round Trip Profiles with W = 1. 

 

Fig. 8.  Mission Duration Vs. Round Trip ∆V for Alternative 
Jupiter Round Trip Profiles with W = 5. 

Figure 9 shows a similar process for an inbound round 
trip to Venus with W = –1. Decreasing the T1 transfer 
time does very little to reduce the total trip time, as was 
the case with the outbound trips. T2 transfers can have 
a greater impact on mission duration than for the 
outbound missions, but comes at a very high cost in 
terms of much larger ∆Vs. 

 

Fig. 9.  Mission Duration Vs. Round Trip ∆V for Alternative 
Venus Round Trip Profiles with W = –1. 

“REDUCED W” ROUND TRIPS 

The round trip time is driven by the need for the 
difference in the number of revolutions for the Earth 
and the traveler to be an integer, W. With Hohmann 
transfers the minimum value of W is 1 for Mars, 5 for 
Jupiter, and –1 for Venus. As we have seen above, so 
long as the value of W doesn’t change, changing the 
1-way travel time by adding energy has almost no 
impact on the total round trip time. However, if the 
energy is increased sufficiently, it is possible to reduce 
the value of W and, consequently, make a large step 
reduction in the total mission duration. The additional 
∆V required to reach the first step will depend entirely 
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on where the baseline mission falls in the Hohmann 
transfer charts presented previously. These “Reduced 
W” missions can have a major impact on mission 
design. T1 transfer total mission duration will have a 
series of discrete jumps of somewhat more than 1 year 
with very little change in mission duration between the 
jumps. T2 transfers are not applicable since the “slow 
down and kill time” approach is counter productive 
when trying to obtain a reduced value of W. 

This process is illustrated for T1 round trip missions to 
Jupiter in Fig. 10. It takes relatively little added ∆V to 
drop from W = 5 to W = 4, with a resulting reduction of 
more than a year in the total trip time. This effect comes 
about because the Earth is now required to “lap” Jupiter 
only 4 times, rather than 5 as for the traditional 
Hohmann round trip transfer. By approximately 
doubling the Hohmann ∆V, we can reduce W to 2 and 
reduce the total round trip time from more than 6 years 
to less than 3 years. “Reduced W” trips can enable 
missions that are not otherwise practical by allowing a 
major reduction in the total mission duration. The ∆V 
cost may be modest or very high, depending on the 
baseline Hohmann mission and the value of ∆W. 

 

Fig. 10.  Jupiter “Reduced W” Missions using T1 Transfers. 
Adding sufficient ∆V to reduce the value of W can have a 
dramatic impact on the total round trip time. 

THE ULTIMATE ROUND TRIP, W = 0 

From the above results it is clear that round trip times 
are driven almost entirely by the value of W. Round 
trips to nearby orbits (e.g., 1.1 AU) are exceptionally 
difficult. For example, a Hohmann transfer round trip to 
a near-Earth asteroid 10 million km (0.07 AU) beyond 
the Earth would require a total mission duration of 11.3 
years and a stay time of 10.3 years. Recall that the 
shortest possible Hohmann outbound round trip is 2 
years and that adding energy does very little to reduce 
that time.  

To significantly reduce the round trip travel time to 
“nearby” locations, we need trips for which W = 0. In 
this case, the following must be true: 

For W = 0 round trips, the average angular 
speed of the home planet and the traveler 
must be the same over the full duration of 
the mission (including the stay at the 
destination). 

As shown in Fig. 11, any periods of slower angular 
speed on the part of the traveler, including stay time at 
the target, must be compensated by periods of faster 
angular speed in order to get back home. Similarly, 
periods of higher angular speed on the part of the 
traveler must be compensated by lower angular speed to 
allow the home planet to catch up. This problem is 
workable, but requires a different time history (and 
considerably more energy) than the usual Hohmann 
transfer process. 

 

Fig. 11.  For W = 0 Missions, the Total Area Under the 
Curve Below the Horizontal Axis must be Equal to the 
Total Area Under the Curve Above the Axis. 

W=0 transfers enable short, flexible round trip missions. 
Mission durations and stay times will be determined 
primarily by the amount of ∆V that we are willing to 
use. These missions are easiest near the home planet 
and would be the only realistic alternative for round 
trips to, for example, near-Earth asteroids. For practical 
purposes, W = 0 missions are potentially applicable in 
the approximate region from Venus on the inner side to 
Mars on the outer side.  

Figure 12 shows how the W = 0 missions work in 
practical terms. The figure shows the angular rates 
during a Hohmann transfer mission to Mars and the 
assumed constant angular rates for the Earth (the home 
planet) and Mars. The transfer begins by adding 
velocity such that the initial angular rate is higher than 
the Earth’s rate. By the time the traveler gets to Mars, it 
has converted sufficient kinetic energy into potential 
energy that it is now going more slowly than Mars and 
must again speed up to rendezvous with the target. In 
the W = 0 missions, we will use only the left portion of 
Fig. 12 such that the average angular velocity for the 
trip out, the stay at the destination, and the return, all 
taken together, is just equal to the angular velocity of 
the Earth. We first speed ahead of the Earth, arrive at 
our destination, then wait for the Earth to catch up, and 
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transfer back. While this can take a large ∆V, it can 
dramatically reduce the round trip time, which is 
particularly important for any human missions beyond 
initial exploration. 

 
Fig. 12.  Angular Rates for a Hohmann Transfer from the 
Earth to Mars.  W = 0 missions will use only the left portion of 
the plot. 

Much like the T1 and T2 missions described above, 
there are two classes of W = 0 missions. W = 0 Direct 
Transfer Missions are those that use only the early 
segment of the transfer trajectory, use a T1 transfer to 
the target orbit, remain there for some period, and then 
transfer back on a trajectory basically equivalent to the 
outbound leg. Typical performance for missions to a 
near-Earth asteroid, Mars, and Venus are shown in 
Figs. 13 to 15. This type of transfer requires a total ∆V 
of 5 to 10 times that of a Hohmann transfer round trip. 
Nonetheless, it can reduce the total round trip time for a 
Mars mission from about 2.6 years to less than 6 
months, or, in the near-Earth asteroid case, from 8 years 
to less than 6 months. Note that the W = 0 near-Earth 
asteroid mission requires approximately the same ∆V as 
the Hohmann round trip to Mars. At the boundary 
between W = 1 (or –1) and W = 0, these missions have 
short stay times, which increase slightly with increased 
∆V.  

Because we need to balance the differential velocity 
between Earth and the target planet with high (or low) 
velocity segments during travel, the ∆V required for W 
= 0 missions increases substantially as we get further 
from the Earth where the Target velocity is very 
different from the Earth’s rate. Conversely, it is much 
easier to use W = 0 missions near the Earth. W = 0 
transfers must be used to achieve realistic mission 
timelines for “near-by” missions such as a round-trip to 
a near-Earth asteroid.  

 
Fig. 13. W = 0 and 1 Direct Transfer Missions to a Near-
Earth Asteroid at 1.1 AU. 

 
Fig. 14. W = 0 and 1 Direct Transfer Missions to Mars. 

 
Fig. 15. W = 0 and –1 Direct Transfer Missions to Venus. 

The W = 0 Direct Transfer missions can provide a very 
short total mission duration, but require high ∆V’s and 
have a short stay time. This can be mitigated to some 
degree by having one or both transfer legs go inside the 
Earth’s orbit (for outbound missions) to provide a high 
angular velocity segment to offset the lower angular 
velocity at the target. W = 0 Indirect Transfer Missions 
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are those that, for outbound missions, drop inside the 
orbit of the home planet on either or both the outbound 
and inbound leg. Having one leg with rapid, direct 
transfer and one leg with a T2 transfer can provide good 
results as shown in Fig. 16. Typically this transfer 
method requires a total ∆V of 3 to 5 times that of a 
Hohmann transfer round trip, significantly less than that 
for direct W = 0 transfers. Indirect transfer provides 
intermediate round trip times of somewhat more than 1 
year with stay times of reasonable duration. As is the 
case with direct W = 0 transfers, indirect transfers can 
be applied to distances out to approximately Venus 
inbound or Mars outbound. 

 
Fig. 16. W = 0 Indirect Transfer Round Trip to Mars. 

ROUND TRIPS IN EARTH ORBIT 

The fundamental constraints and constraint equations 
derived above for interplanetary missions apply equally 
to Earth-orbiting missions. For example, the same 
round trip rules apply to missions from the International 
Space Station (ISS) to other satellites in either low-
Earth orbit or geosynchronous orbit that require 
returning “home” to the ISS. 

However, the basic driver of the mission timeline is the 
period of the home planet or satellite. For interplanetary 
missions with Earth as home, this fundamental period is 
1 year. One extra orbit can make a critical difference to 
mission cost and risk. For Earth-orbiting missions with 
the ISS as home, the fundamental period is 90 minutes. 
A few extra orbits make very little difference to mission 
cost and risk. For Earth-orbiting missions, round trip 
mission design is likely to be driven more by 
differences in inclination or nodal drift rates than by a 
few more periods in orbit transfer. The rules for 
returning home apply, but simply add one more 
constraint among many.  

Synodic periods are a good way to measure the likely 
impact of the fundamental constraints on round-trip 
travel. (See, for example, Wertz [2001].) Thus, for the 
Earth and Mars, the synodic period is 2.135 years, and 

minimizing mission duration is important. For a near-
Earth asteroid at 1.1 AU, the synodic period is 7.5 years 
and a W = 0 mission is generally required. For a 
satellite at 600 km altitude, the synodic period relative 
to the ISS at 350 km is 29 hours. While the round trip 
time may need to be taken into account, it is unlikely to 
be a key driver for round trip mission design in Earth 
orbit.  

THE “INTERPLANETARY TRAIN SCHEDULE” 

For the mission segment going from home to the target, 
the traveler must start at the home planet and arrive at 
the target.  Therefore, the start time, Tstart, and start 
mission anomaly, νstart, and arrival time, Tarrive, and 
arrival mission anomaly, νarrive, relative to when the 
home planet and the target are both at the same mission 
anomaly are given by: 

νstart  =  Tstart ωH   (16) 

νarrive  =  Tarrive ωT   (17) 

where ωH and ωT are the angular velocities of the home 
and target, respectively.  For the Earth as the home 
planet, “the same mission anomaly” means that the 
target and Earth are on the same side of the Sun and the 
Sun, Earth, and target are in a straight line.  This is 
opposition for Mars or inferior conjunction for Venus.  
For the traveler to start at the home planet and end at 
the target, we must have: 

∆νtransfer =  νarrive – νstart  =  ωtransfer  ttransfer (18) 

where the “transfer” subscript refers to the travel 
segment between home and the target.  Therefore, given 
a transfer time, ttransfer, and transfer arc, ∆νtransfer, we can 
determine the required start and arrival times, relative 
to opposition, as: 

Tstart  =  ttransfer  (ωT  –  ωtransfer) / (ωH  –  ωT)  (19) 

Tarrive  =  Tstart   +  ttransfer (20) 

Equations (16) and (17) then provide the start and 
arrival mission anomalies. 

Given a transfer scenario, we can use Equations (16) 
through (20) to determine the start and arrival times of 
the various mission segments relative to opposition.  
Small corrections will be needed to account for the non-
zero eccentricity of real planetary orbits.  While the 
above approximations are well known, they have been 
applied largely in the vicinity of minimum energy 
transfers.  For higher energy missions we can construct 
a “train schedule” of transfer times to the planets as a 
function of phase in the synodic period and total 
transfer ∆V.  Thus, the general mission design process 
lets us look at the total round trip time, the stay time, 
and the mission start and end times relative to the 
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synodic period — all as a function of the total ∆V that is 
available for the mission. 

EXAMPLE:  CREATING A LOW-COST, NEAR-
TERM HUMAN MISSION TO MARS 

A key problem with human Mars missions is the need 
for life support for a 2.5 year mission duration. 
Reducing the mission to 6 months by using a W = 0 
round trip would take dramatically high ∆V’s and 
require shorter stays on Mars than are desirable for 
exploration.  

As an alternative, we can consider a “two-phase” 
human mission to Mars. We send the descent module, 
exploration equipment, extra life-support equipment 
and supplies, and Earth-return equipment to Mars on a 
Hohmann low-energy, W = 2 transfer. All of the 
equipment is deployed and tested after arrival in Mars 
orbit. For the astronauts, we use a 70-day transfer, 2 to 
3 week stay on Mars, and 70-day return. Most of the 
mass, including the mass required for the return trip, is 
transferred at minimum energy and, therefore, 
minimum cost. On the other hand, people are 
transferred on a minimum time trajectory. The total 
duration of human life support is reduced from 975 
days to 160 days, a factor of 6 reduction. In addition, 
the astronauts are at Mars around opposition, when 
communication with Earth is the easiest and Mars 
would be brightly visible in the night sky.  

This suggests a different paradigm for future low-cost, 
rapid human exploration of the solar system. Equipment 
moves slowly and economically. People move more 
rapidly and, consequently, more safely and 
economically as well. This alternative should be given 
serious consideration as we attempt to understand the 
potential, the limitations, and the technology needs of 
human exploration of the solar system. 

CONCLUSIONS 

The design of interplanetary round trip missions is 
driven primarily by the fundamental constraint that the 
difference in the change in mission anomaly between 
the traveler and the Home planet must be an integral 
number of orbits. For W = 1, the total trip time is driven 
by the need to allow the Earth to make one extra 
revolution during the trip. This constraint is needed to 
get the traveler back to Earth. Slowing the angular 
velocity of the traveler, by taking it to a larger distance 
from the Sun for example, can reduce the total trip time, 
although the impact is typically modest. A similar 
constraint applies to other non-0 values of W. 

Some of the statements in this paper at first appear 
almost paradoxical, but on closer analysis they fall into 
a logical, if unfamiliar, pattern. Note that it does not 

matter how we go about getting from home to the 
destination. It could be via direct transfer, low-trust 
spirals, or multiple planetary fly-bys. All of these can 
change the required ∆V for any mission. However, the 
fundamental restrictions on total mission duration arise 
only from the requirement to return home, not on how 
we go about arranging the trip. 

The most effective approach for reducing the total 
mission duration is to reduce the value of W, i.e., the 
number of extra times the home planet must go around 
the Sun before the traveler returns. For W = 0, there are 
much faster round trip missions with greater timeline 
flexibility at a cost of 3 to 10 times the ∆V of minimum 
energy missions. These missions can bring round trip 
times down to 6 months or less, whereas minimum 
energy outbound round trip missions are at least two 
years in duration and often substantially longer. Thus, 
realistic human spaceflight on a regular basis may 
require ∆V’s that are 3 to 10 times that of minimum 
energy missions. Interplanetary Round Trip Mission 
Design is a relatively new field with interesting 
possibilities. While the general rules are now known, 
there are many detailed design elements yet to be 
discovered. 
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